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1. Introduction

In the previous paper [1], the spatial correlations between monopoles [2] and low-lying Dirac

eigenmodes (eigenfunctions of the Dirac operator) were studied in 4D quenched compact

QED, and it was found that there exist universal anti-correlations between them below and

above the critical coupling βc. The clear anti-correlation between Dirac eigenfunctions and

monopoles implies that the level dynamics of Dirac eigenvalues, which is responsible for the

chiral phase transition via Banks-Casher relation [3], is controlled by monopole configura-

tions in 4D Euclidean system [1]. In the strong coupling phase (β < βc), monopoles form

global and complicated clusters and make the vacuum complex bringing about repulsive

forces among Dirac eigenvalues [1, 4, 5]. This repulsive force among eigenvalues, which

is observed as the Wigner distribution in the neighboring level spacings, forms the non-

vanishing spectral density at the spectral origin, which is equivalent to the non-vanishing

chiral condensate 〈ψψ〉. On the other hand, in the weak coupling phase (β > βc), large

monopole clusters vanish and the vacuum structure is much simpler, which leads to weaker

repulsive forces among eigenvalues [1, 4, 5] and results in the Poisson statistics in the level

spacings. This weaker repulsive force is not so strong that Dirac eigenvalues can form

non-zero spectral density at the origin, and the chiral condensate vanishes in this phase.

We in ref. [1] varied the couplings around the critical coupling βc employing isotropic

4D systems with the total volumes fixed, and investigated the natures of low-lying Dirac

modes. In this case, the chirally symmetric vacuum realized at β > βc is rather simple and

perturbative. It is however known that the “finite temperature” transition still exhibits

several nonperturbative features. For example, in the case of QCD, the formation of the

strongly-coupled quark-gluon plasma phase (sQGP) [6 – 8] just above the transition tem-

perature was recently suggested and attracting many interests. Nonperturbative aspects
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above the transition temperature Tc can be also observed in the Wilson loops. Whereas

temporal Wilson loops exhibit deconfinement feature above Tc, spatial Wilson loops still

show an area law (i.e. temporally deconfined and spatially confined), which hints that

the vacuum structure is not simple but still complicated even above Tc. The (3+1)D com-

pact QED has similar properties, and the remaining nonperturbative structures can be also

found in it. We investigate the properties of Dirac eigenmodes, eigenvalues, and monopoles

in quenched (3+1)D compact QED, and see what happens.

The organization of this paper is as follows: In section 2, we briefly show our formal-

ism. Several properties of low-lying Dirac modes and eigenvalues are clarified in section 3.

Section 4 is devoted to the discussion based on numerical results. We summarize the paper

in section 5.

2. Formalism

We adopt the Wilson gauge action at β=1.01 for gauge fields,

SQED = β
∑

x

∑

µ,ν

(1 − cos θµν(x)), (2.1)

and employ the overlap-Dirac operator [9, 10], which is constructed as

D ≡ ρ[1 + γ5sgn(HW )] ≡ ρ

[

1 + γ5
HW

√

HW
2

]

, (2.2)

and realizes the exact chiral symmetry on a lattice [11, 12]. Here, HW ≡ γ5(DW − ρ)

is the hermitian Wilson-Dirac operator defined with the standard Wilson-Dirac operator

DW . The “negative mass” ρ is chosen in the range of 0 < ρ < 2, which we set 1.6

throughout this paper. We impose the periodic boundary conditions in all the spatial

direction for the fermion fields, and the anti-periodic boundary condition is imposed on

the temporal boundary. We compute lowest 50 eigenpairs at each “temperature”, with 48

gauge configurations. All the eigenvalues λlat of D, which lie on a circle with the radius of

ρ in a complex plain, are stereographically projected onto the imaginary axis via Möbius

transformation [13],

λ =
λlat

1 − λlat/2ρ
. (2.3)

The spatial volumes are all fixed to 123 and we adopt 5 different temporal lengths, Nt = 1/T

= 4, 6, 8, 10, and 12. The “finite temperature” phase transition in compact QED was

extensively investigated [14] and the “transition temperature” at β = 1.01 was found to lie

around Nt ∼ 6. (See also ref. [15].) We expect that our setup can cover the systems below

and above the transition temperature, though finite volume effects might not be negligible

and the phase transition temperature would be slightly modified.

3. Low-lying Dirac eigenvalues and corresponding modes

In ref. [1], we found anti-correlations between (near-zero) Dirac modes and monopoles,

which indicates that near-zero modes are “scattered” by monopoles, and it was conjectured
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Figure 1: The normalized monopole densities (total monopole lengths divided by total volumes)

are plotted. The solid line is drawn at Nt ∼ 7 for reference.

that monopoles as impurities for near-zero modes are responsible for the “complexity” of

a vacuum and control the level dynamics of low-lying Dirac eigenvalues [1]. Abundance of

monopoles implies a complex vacuum and the level spacing distributions of Dirac eigen-

values obey the Wigner distribution. On the other hand, absence of monopoles makes a

vacuum simple and the Poisson-like distribution appears. The Wigner (Poisson-like) dis-

tribution is the consequence of strong (weak) repulsive forces among Dirac eigenvalues,

and strong (weak) repulsive forces are responsible for a non-vanishing (vanishing) spectral

density at the spectral origin. The spectral density at the origin is finally related to chiral

condensate 〈ψ̄ψ〉 via the Banks-Casher relation [3]. Chiral condensate 〈ψ̄ψ〉 simply reflects

the complexity of a vacuum, which is brought about by monopoles’ degrees of freedom.

These results in ref. [1] were all obtained in isotropic systems where the temporal length

Nt is equal to the spatial extent Ns (Nt = Ns ≫ 1/Tc). Then, is this scenario the case

also at “finite temperature” (Nt < Ns)? The answer would be no. Though the chirally

symmetric vacuum in the weak coupling regime is actually simple [1], we expect that the

symmetric vacuum realized at high temperature is still complex. In fact, monopole density

is not much reduced even at high temperature (small Nt) region, which can be found in

figure 1.

We go further with the clarification of the chiral phase transition in compact QED.

The keywords are (1) spectral densities at the spectral origin, (2) level spacing distributions

of Dirac eigenvalues, (3) correlations between low-lying Dirac modes and monopoles, and

(4) spatial distributions of low-lying Dirac modes.

3.1 Spectral densities and level spacing distributions

We show in figure 2 the histograms of Dirac eigenvalues at Nt=12, 8, and 4.

The numbers of zero modes found in 48 gauge configurations at each inverse temper-

ature 1/T = Nt (4, 6, 8, 10, 12) are listed in table 1.

The histograms around the spectral origin at Nt=8, 12 are found to be rather flat-

tened and have non-zero heights, while that at Nt=4 exhibits the vanishing density. These

densities are related to the non-vanishing (vanishing) chiral condensate at Nt > 6 ∼ 1/Tc

(Nt < 6 ∼ 1/Tc) via the Banks-Casher relation. It is remarkable that the chiral phase tran-
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Figure 2: The histograms Hev(λ) of the eigenvalues λ of the overlap-Dirac operator D are plotted

for each Nt(12,8,4). The horizontal axis denotes −iλ. All the eigenvalues λlat lying on a circle in a

complex plain are stereographically projected onto the imaginary axis via Möbius transformation,

λ = λlat

1−λlat/2ρ .

Nt 4 6 8 10 12

ν = 0 41 38 41 28 32

ν = 1 6 10 7 17 12

ν = 2 1 0 0 3 4

Table 1: The numbers of exact zero-modes found in 48 gauge configurations at each inverse

temperature Nt are listed. The i-th row gives the number of configurations with 0, 1, 2 zero-

mode(s), respectively.
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Figure 3: Left: The histograms Hev(λ) of the eigenvalues λ of the overlap-Dirac operator D,

which are obtained with 123×4, 143×4, and 163×4 lattices. Middle and Right: The distributions

of lowest nonzero eigenvalues at Nt = 12 and 4 obtained with ν = 0 gauge configurations.

sition is almost accompanied by the deconfinement transition, which would occur around

Nt ∼ 6. The vanishing density seen in the 123 × 4 system could be the consequence of

some finite (spatial) volume effects. In order to ensure that it is not the case, we show

the normalized histograms Hev(λ) obtained with 123 × 4, 143 × 4, and 163 × 4 lattices in

figure 3[left]. All three histograms exhibit the same behavior, and we can neglect the finite

volume effects in 123 × 4 system. The lowest-nonzero-eigenvalue distributions at Nt = 12
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Figure 4: The unfolded nearest-neighbor level spacing distributions Plat(s) at Nt=12, 8, and 4.

The solid lines denote the Wigner distribution function PWig(s) ≡
32
π2 s2 exp(− 4

π s2) and the dashed

lines the Poisson distribution function PPoi(s) = exp(−s).

and 4 in ν = 0 sector are respectively plotted in figure 3[middle] and figure 3[right], for the

purpose of reference.

As actually demonstrated in refs. [1, 16], the spectral density at the spectral origin

is enhanced by the “repulsive force” among eigenvalues, and this force can be clarified

with the neighboring level spacing distributions of Dirac eigenvalues. We show in figure 4

the unfolded neighboring level spacing distributions Plat(s) obtained at Nt=12, 8, and

4. The solid lines denote the Wigner distribution function PWig(s) ≡ 32
π2 s2 exp(− 4

π
s2),

which is a good approximation of the original distribution obtained by the random matrix

theory with chiral unitary ensemble, and the dashed lines the Poisson distribution function

PPoi(s) = exp(−s). We again find the Wigner-Poisson transition, which was also found in

ref. [1] and is consistent with the spectral densities at the origin.

3.2 Low-lying Dirac modes and monopoles

We next investigate the correlations between low-lying modes and monopoles following

ref. [1]. For this aim, we define and investigate the histogram ratios Rψ(ρψ) [1] defined as

Rψ(ρψ) ≡
Hmon

ψ (ρψ)

Hall
ψ (ρψ)

. (3.1)

The eigenmode density ρψ ≡
∑

α |ψλ(x)|2 here is the absolute squares of an eigenfunction

ψλ(x) locally summed up over the spinor index. Hall
ψ (ρψ) (Hmon

ψ (ρψ)) denotes the histogram

of ρψ evaluated at all the sites (only on monopoles). This quantity Rψ(ρψ) equals to 1, if

there is no correlation between the spatial fluctuations of Dirac modes and monopoles. In

the case when a positive (negative) correlation exists between the spatial fluctuations of

Dirac modes and monopoles, Rψ(ρψ) > 1 at smaller (larger) ρψ and Rψ(ρψ) < 1 at large

(smaller) ρψ hold. We show in figure 5 the histogram ratios for near-zero modes obtained at

Nt=12, 8, and 4. Display ranges are chosen as 0 ≤ ρψ ≤ 0.0002× 12
Nt

with intrinsic densities

in mind. The universal anti-correlations are again observed. (We here omit the results on

exact-zero modes [17, 18], since they show no apparent correlation with monopoles. This
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Figure 5: The histogram ratios Rψ(ρψ) for near-zero modes at Nt=12, 8, and 4 are plotted in

the range of 0 ≤ ρψ ≤ 0.0002× 12
Nt

. We draw a line at Rψ(ρψ) = 1 for reference.

tendency was also found in our previous paper [1]. The present strategy is rather simple

and we would need more sophisticated analyses to cast light on the properties of exact-zero

modes. In the following sections, attentions will be paid mainly to near-zero Dirac modes.)

3.3 Spatial distributions of low-lying Dirac modes

To clarify the spatial distributions of Dirac eigenmodes, it is convenient to extract the in-

verse participation ratio (IPR) of each eigenmode. The eigenmode’s distribution is partially

encoded in the corresponding IPR: The IPR is unity when ψλ(x) maximally spreads over

the system, and equals to V in the case when ψλ(x) lives only on a single site, reflecting

the spatial distribution of the eigenfunction ψλ(x).

The IPR I(λ) of ψλ(x) is defined as

I(λ) = V
∑

x

ρIPA(x)2, ρIPR(x) ≡
∑

α

|ψλ(x)|2. (3.2)

Here, V denotes the system volume and ψλ(x) is the eigenfunction associated with an

eigenvalue λ normalized as
∑

x |ψλ(x)|2 = 1. The Greek alphabet α is the index for a

spinor. The density ρIPR(x) is obtained by locally summing up the absolute square of each

component of an eigenfunction ψλ(x) only over its spinor index.

We show the scatter plots of the IPRs of low-lying modes in figure 6. The IPRs of

near-zero modes approximately range from 1 to 2 at Nt=8 and 12. On the other hand, at

Nt=4, many of the IPRs of near-zero modes take much larger values indicating the strong

localizations of near-zero modes above Tc. Near-zero modes are localized and the overlaps

among them get much smaller, which would be the source of the Poisson-like distribution

in the neighboring level spacings of Dirac eigenvalues: Level repulsions would not occur

without overlaps among eigenfunctions. Weaker repulsive forces among eigenvalues char-

acterized by such a Poisson-like statistics lead to the vanishing eigenvalue density at the

spectral origin, and the chiral symmetry is restored. The chiral phase transition across Tc

is now found to be essentially different from that across βc [1]. The Poisson-like statistics

above βc, where near-zero Dirac modes are completely delocalized and are plane-wave like,
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Figure 6: The scatter plots of inverse participation ratios of low-lying Dirac modes at Nt=12, 8,

and 4. The horizontal axis denotes −iλ, the associated eigenvalue to each Dirac mode.

is caused by the “simpleness” of the vacuum. That above Tc is however driven by the

localization of near-zero modes. We expect nontrivial vacuum structures above Tc.

We define another type of IPR Is(λ;µ), which is nothing but the IPR evaluated in a

3-dim subspace at xµ = const., for further clarification of Dirac modes’ distributions above

Tc. The subspace-IPR Is(λ;µ) is defined as,

Is(λ;µ) ≡ Vs

∑

xµ=const.

ρ′IPA(x;µ)2, ρ′IPR(x;µ) ≡
∑

α

|ψλ(x)|2/
∑

α,x,xµ=const.

|ψλ(x)|2. (3.3)

Here, Vs denotes the volume of the 3-dim subspace. We evaluate the ratios,

Is(λ; i)/I(λ)(i = 1, 2, 3) and Is(λ; 4)/I(λ). In case an eigenfunction is simply extended

along the temporal direction and spatially localized, Is(λ; 4)/I(λ) is just unity and

Is(λ; i)/I(λ)(i = 1, 2, 3) is expected to be less than 1, because in this case the eigenfunction

has no structure along the time-direction and only the spatial structure is responsible for

the total IPR. We show in figure 7 Is(λ; 4)/I(λ) and Is(λ; i)/I(λ)(i = 1, 2, 3) obtained in

123 × 4 lattice. One can find that Is(λ; 4)/I(λ) ≃ 1 and Is(λ; i)/I(λ)(i = 1, 2, 3) ≪ 1

hold, which indicates the vanishing temporal structure of low-lying Dirac modes at Nt = 4.

All the ratios, Is(λ; 4)/I(λ) and Is(λ; i)/I(λ)(i = 1, 2, 3), evaluated at 4 ≤ Nt ≤ 12 are

shown in figure 8. The temporal structures of low-lying modes quickly vanish around

Nt ∼ 6 ∼ 1/Tc.

4. Discussions

Now that we have found that, at “high temperature”, low-lying (near-zero) Dirac modes

lose their temporal structures and are spatially localized. We have two questions: (1)Why

do the temporal structures of near-zero modes vanish? (2)Why are near-zero modes spa-

tially (and strongly) localized? As we have just found or as can be found in ref. [1], near-

zero Dirac modes have anti-correlations with monopoles and then monopoles are surely

responsible for the distributions of near-zero modes. These features may come from the

metamorphosis of monopole world lines.

Monopole world lines will take “static” configurations at high temperature; most of

the world lines are twisted around the 4-dim torus along the temporal direction as is
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Figure 7: The IPR-ratios, Is(λ; i)/I(λ)(i = 1, 2, 3) [left] and Is(λ; 4)/I(λ) [right] obtained with

the 123 × 4 lattice are plotted.
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123 × 4 ∼ 123 × 12 lattice are plotted.

illustrated in figure 9[left]. In such a case, near-zero modes can be freely extended along

the temporal direction, since they do not encounter monopoles as impurities for near-zero

modes, which is schematically illustrated in figure 9[middle]. This “clearing up” along the

temporal direction may be the main cause for the vanishing temporal structures of near-

zero modes. It could be also the origin of the stronger localization properties of near-zero

modes: The clearing up leads to the irrelevance of the temporal direction and implies that

the system dimensionality for near-zero Dirac modes is reduced approximately to three.

The near-zero modes are then expected to get strongly localized due to this dimensional

reduction. (Dimensionality also plays an essential role in the localization of wavefunctions.

It is a celebrated fact that, in a system whose dimensionality is lower than two, any random

potentials readily lead to the exponential localization of wavefunctions.)

One may wonder which is the main origin of the effective dimensional reduction, clear-

ing up along the temporal direction or shorter temporal extent Nt (“thermal” effect). To

answer this question, we perform exactly the same analyses in an artificially constructed

isotropic 123 × 12 system. We define link variables U
(2)
µ (x, t) for this new system with
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Figure 9: Left: Monopoles take rather static configurations with small Nt (at high tempera-

ture). Middle: Near-zero Dirac modes are localized avoiding monopoles. In the presence of static

monopoles, near-zero modes would be spatially localized and temporally delocalized. Right: We

artificially construct 123 × 12 system duplicating 123 × 4 system. Due to the periodicity of gauge

fields, monopole configurations on this artificial 123×12 system are the same as those in the original

123 × 4 system.

Uµ(x, t) in the original 123 × 4 lattice. U
(2)
µ (x, t) is defined as

U (2)
µ (x, t) ≡ Uµ(x, t mod 4) (0 ≤ t ≤ 11). (4.1)

In other words, we construct an isotropic 123×12 system by piling up three 123×4 systems.

(See figure 9[right].) Due to the periodicity of U(1) gauge fields, monopole configurations

are the same in these two systems. Though this newly constructed lattice is an isotropic

system, monopole world lines exhibit static configurations. We show in figure 10 the

histogram ratio Rψ(ρψ) for near-zero modes, the scatter plot of inverse participation ratios

of low-lying Dirac modes, the unfolded nearest-neighbor level spacing distributions Plat(s),

the IPR-ratio Is(λ; i)/I(λ)(i = 1, 2, 3), and the IPR-ratio Is(λ; 4)/I(λ). Surprisingly, all

the quantities essentially remain the same, which indicates that the properties of low-lying

modes do not depend on the temporal lattice extent at all, and that the temporal dimension

is actually irrelevant.

The chiral phase transition in compact QED system is controlled by the metamorphosis

of monopole world lines: When a system is covered by large monopole clusters, the system

is complex [1] and the spectra of Dirac operators exhibit the Wigner distribution, which

implies strong repulsions among Dirac eigenvalues and gives rise to the non-vanishing spec-

tral density at the origin (〈ψ̄ψ〉 6= 0). On the other hand, at high temperature, monopole

world lines take static configurations and the system undergoes the clearing up along the

temporal direction, which would lead to the effective dimensional reduction for near-zero

modes and to the exponential localization of the modes. The exponential localization of

Dirac modes causes weaker repulsive forces among eigenvalues exhibiting the Poisson-like

distribution of Dirac spectra. Such weak repulsive forces cannot form non-zero spectral

density at the spectral origin (〈ψ̄ψ〉 = 0). The metamorphosis of monopole world lines is

also responsible for the deconfinement phase transition. In a system where large monopole

clusters cover the entire volume, it is in confinement phase. When monopole world lines

take static configurations, the system breaks out from the confinement phase to the decon-

finement phase. Such static monopoles still lead to the spatial confinement, which is the

remnant of the confinement and gives rise to remaining nonperturbative phenomena.
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Figure 10: Several quantities obtained with the artificially constructed 123×12 lattice are plotted;

upper left: The histogram ratio Rψ(ρψ) for near-zero modes, upper middle: the scatter plot of

inverse participation ratios of low-lying Dirac modes, upper right: the unfolded nearest-neighbor

level spacing distributions Plat(s), lower left: the IPR-ratio Is(λ; i)/I(λ)(i = 1, 2, 3), lower right:

the IPR-ratio Is(λ; 4)/I(λ). Surprisingly, all these results remain almost the same as those in 123×4

system.

These two phase transitions are then considered to be both controlled by the monopole

dynamics. The coincidence of two “transition temperatures” could be naturally understood

from this viewpoint. At least, if the metamorphosis of monopole world lines in the vicinity

of the phase transition point is quick enough, the transition temperatures would be similar

in magnitude. The clarification of Polyakov loops in terms of Dirac spectra [19] could also

give us deeper understanding of the possible relationship between confinement and chiral

symmetry breaking.

5. Summary

We have studied the properties of low-lying Dirac modes in quenched compact QED at

β=1.01, employing 123×Nt lattices with Nt = 1/T = 4, 6, 8, 10, 12. The overlap formalism

has been adopted for the fermion action.

We have found several features worth noting:

• The nearest-neighbor level spacing distribution of Dirac eigenvalues coincides with

the Wigner distribution at Nt = 12 (confinement phase), and it gradually changes

to the Poisson distribution as Nt is decreased, which is consistent with the spectral

density at the spectral origin.
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• Near-zero modes exhibits stronger localization at high temperature, which is the

origin of the Poisson-like distribution of Dirac spectra.

• Near-zero modes lose their temporal structures above Tc.

• Near-zero modes have been found to have universal anti-correlations again with

monopole world lines below and above the critical temperature.

The chiral phase transition at “high temperature” in compact QED seems to be controlled

by the metamorphosis of monopole world lines. Monopole world lines take static config-

urations at high-T system and the system undergoes the clearing up along the temporal

direction, which would lead to the effective dimensional reduction for near-zero modes.

This reduction is responsible for the exponential localization of the modes, which causes

weaker repulsive forces among eigenvalues and gives rise to the Poisson-like distribution of

Dirac spectra. Due to such weak repulsive forces, the spectral density at the spectral origin

vanishes (〈ψ̄ψ〉 = 0). Taking into account that the metamorphosis of monopole world lines

is also responsible for the deconfinement transition, we conjecture from the microscopic

viewpoint that the chiral and confinement/deconfinement transitions in compact QED are

both induced by a single origin, monopole’s dynamics.
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